3 Ways to Simplify Complex Numbers - wikiHow (2024)

  • Categories
  • Education and Communications
  • Studying
  • Mathematics
  • Algebra

Download Article

Explore this Article

methods

1Adding or Subtracting Complex Numbers

2Multiplying Complex Numbers

3Dividing Complex Numbers

Other Sections

Video

Related Articles

Expert Interview

References

Co-authored byJake Adams

Last Updated: November 28, 2023Fact Checked

Download Article

A complex number is a number that combines a real portion with an imaginary portion. Imaginary is the term used for the square root of a negative number, specifically using the notation 3 Ways to Simplify Complex Numbers - wikiHow (3). A complex number, then, is made of a real number and some multiple of i. Some sample complex numbers are 3+2i, 4-i, or 18+5i. Complex numbers, as any other numbers, can be added, subtracted, multiplied or divided, and then those expressions can be simplified. You need to apply special rules to simplify these expressions with complex numbers.

Method 1

Method 1 of 3:

Adding or Subtracting Complex Numbers

Download Article

  1. 1

    Add the real portions together. Recognize that addition and subtraction are really the same process. Subtraction is nothing more than adding a negative number. Therefore, addition and subtraction are treated as versions of the same process. To add two or more complex numbers, first just add the real portions of the numbers together.[1]

    • For example, to simplify the sum of (a+bi) and (c+di), first identify that a and c are the real number portions, and add them together. Symbolically, this will be (a+c).
    • Using actual numbers instead of variables, consider the example of (3+3i) + (5-2i). The real portion of the first number is 3, and the real portion of the second complex number is 5. Add these together to get 3+5=8. The real portion of the simplified complex number will be 8.
  2. 2

    Add the imaginary portions together. In a separate operation, identify the imaginary portions of each complex number and add them together.[2]

    • For the algebraic example of (a+bi) plus (c+di), the imaginary portions are b and d. Adding these together algebraically gives the result (b+d)i.
    • Using the numerical example of (3+3i) + (5-2i), the imaginary portions of the two complex numbers are 3i and -2i. Adding these gives the result of 1i, which can also be written just as i.

    Advertisem*nt

  3. 3

    Combine the two parts to form the simplified answer. To find the final simplified version of the sum, put the real part and the imaginary part back together. The result is the simplified sum of the complex numbers.[3]

    • The sum of (a+bi) and (c+di) is written as (a+c) + (b+d)i.
    • Applying the numerical example, the sum of (3+3i) + (5-2i) is 8+i.
  4. Advertisem*nt

  1. 1

    Remember the F-O-I-L rule. Looking at a complex number (a+bi) should remind you of binomials from Algebra or Algebra 2. Remember that to multiply binomials, you need to multiply each term of the first binomial by each term of the second. A shorthand version for doing this, is the F-O-I-L rule, which stands for “First, Outer, Inner, Last.” For an example of (a+b)(c+d), apply this rule as follows:[4]

    • First. The F in FOIL means that you multiply the first term of the first binomial by the first term of the second binomial. For the sample, this would be a*c.
    • Outer. The O in FOIL tells you to multiply the “outer” terms. These are the first term of the first binomial and the second term of the second binomial. For the sample, this would be a*d.
    • Inner. The I in FOIL means to multiply the “inner” terms. These would be the two terms that appear in the middle, which are the second term of the first binomial and the first term of the second binomial. In the given example, the inner terms are b*c.
    • Last. The L in FOIL represents the last terms of each binomial. For the sample expression, this would be b*d.
    • Finally, add all four products together. The result for the sample binomial multiplication of (a+b)(c+d) is ac+ad+bc+bd.
  2. 2

    Apply the FOIL rule to complex number multiplication. To multiply two complex numbers, set them up as the product of two binomials and apply the FOIL rule. For example, the product of the two complex numbers (3+2i)*(5-3i) works as follows:[5]

    • First. The product of the first terms is 3*5=15.
    • Outer. The product of the outer terms is 3*(-3i). This product is -9i.
    • Inner. The product of the two inner terms is 2i*5. This product is 10i.
    • Last. The product of the last terms is (2i)*(-3i). This product is -6i2. Recognize that i2 equals -1, so the value of -6i2 is -6*-1, which is 6.
  3. 3

    Combine the terms. After applying the FOIL rule and finding the four independent products, combine them together to find the result of the multiplication. For the sample (3+2i)*(5-3i), the parts combine to give 15-9i+10i+6.[6]

  4. 4

    Simplify by combining like terms. The result of the FOIL rule multiplication should yield two real number terms and two imaginary number terms. Simplify the result by combining like terms together.[7]

    • For the sample 15-9i+10i+6, you can add the 15 and 6 together and add the -9i and the 10i together. The result will be 21+i.
  5. 5

    Work through one more example. Find the product of the two complex numbers (3+4i)(-2-5i). The steps for this multiplication are:[8]

    • (3)(-2)=-6 (First)
    • (3)(-5i)=-15i (Outer)
    • (4i)(-2)=-8i (Inner)
    • (4i)(-5i)=-20i2=(-20)(-1)=20 (Lasts)
    • -6-15i-8i+20 = 14-23i (Combine terms and simplify)
  6. Advertisem*nt

Method 3

Method 3 of 3:

Dividing Complex Numbers

Download Article

  1. 1

    Write the division of two complex numbers as a fraction. When you want to divide two complex numbers, set up the problem as a fraction. For example, to find the quotient of (4+3i) divided by (2-2i), set up the problem as follows:[9]

    • 3 Ways to Simplify Complex Numbers - wikiHow (16)
  2. 2

    Find the conjugate of the denominator. The conjugate of a complex number is a useful tool. It is simply created by changing the sign in the middle of the complex number. Thus, the conjugate of (a+bi) is (a-bi). The conjugate of (2-3i) is (2+3i).[10]

  3. 3

    Multiply the numerator and denominator by the conjugate of the denominator. Whenever you multiply by a fraction whose numerator and denominator are identical, the value is just 1. This is a useful tool for simplifying complex numbers, particularly for division problems. Thus, set up the example 3 Ways to Simplify Complex Numbers - wikiHow (19) as follows:[11]

    • 3 Ways to Simplify Complex Numbers - wikiHow (20)
    • Then multiply the numerator and denominator and simplify as follows:
      • 3 Ways to Simplify Complex Numbers - wikiHow (21)
      • 3 Ways to Simplify Complex Numbers - wikiHow (22)
      • 3 Ways to Simplify Complex Numbers - wikiHow (23)
      • 3 Ways to Simplify Complex Numbers - wikiHow (24)
      • 3 Ways to Simplify Complex Numbers - wikiHow (25)
    • Notice in the second step above, the denominator contains the terms 3 Ways to Simplify Complex Numbers - wikiHow (26) and 3 Ways to Simplify Complex Numbers - wikiHow (27). These will cancel each other out. This will always happen as a result of multiplying by the conjugate. The imaginary terms of the denominator should always cancel and disappear.
  4. 4

    Return to complex number format. Recognize that the single denominator applies equally to both portions of the numerator. Split the numerator apart to create a standard complex number.[12]

    • 3 Ways to Simplify Complex Numbers - wikiHow (29)
  5. Advertisem*nt

Community Q&A

Search

Add New Question

  • Question

    What if there's only 1 number for the denominator when it comes to complex numbers? For example: 8 - 3i/-2i? What would the conjugate be for the denominator?

    3 Ways to Simplify Complex Numbers - wikiHow (30)

    Technist

    Community Answer

    Here, your denominator has a real number of 0 and a complex number of -2. So what you're really seeing is (8-3i)/(0-2i). So the conjugate would be 0+2i, or simply 2i. You multiply with that and it cancels out the 'i' in the denominator.

    Thanks! We're glad this was helpful.
    Thank you for your feedback.
    If wikiHow has helped you, please consider a small contribution to support us in helping more readers like you. We’re committed to providing the world with free how-to resources, and even $1 helps us in our mission.Support wikiHow

    YesNo

    Not Helpful 1Helpful 9

  • Question

    How do you simplify an expression like 8(i^60)?

    3 Ways to Simplify Complex Numbers - wikiHow (31)

    Alphabet

    Community Answer

    It is known that i^1 = i = sqrt(-1), i^2 = -1, i^3 = -i, and i^4 = 1. Therefore we can split up large exponents like so: 8i^60 = 8 * (i^4)^15 = 8 * (1)^15 = 8.

    Thanks! We're glad this was helpful.
    Thank you for your feedback.
    If wikiHow has helped you, please consider a small contribution to support us in helping more readers like you. We’re committed to providing the world with free how-to resources, and even $1 helps us in our mission.Support wikiHow

    YesNo

    Not Helpful 5Helpful 0

  • Question

    How to simplify if you have -6i³+i²?

    3 Ways to Simplify Complex Numbers - wikiHow (32)

    Orlando Huang

    Community Answer

    You can't sumplify, you can only solve. -6*-i=6i, i^2=-1. 6i+-1=-1+6i. ∴-6i^3+i^2=-1+6i.

    Thanks! We're glad this was helpful.
    Thank you for your feedback.
    If wikiHow has helped you, please consider a small contribution to support us in helping more readers like you. We’re committed to providing the world with free how-to resources, and even $1 helps us in our mission.Support wikiHow

    YesNo

    Not Helpful 0Helpful 2

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

      Advertisem*nt

      Video

      Tips

      Submit a Tip

      All tip submissions are carefully reviewed before being published

      Submit

      Thanks for submitting a tip for review!

      You Might Also Like

      How toFind the Maximum or Minimum Value of a Quadratic Function EasilyHow toFactor a Cubic Polynomial
      How toSolve a Cubic EquationHow toLearn AlgebraHow toCalculate FrequencyHow toSolve for XHow toAlgebraically Find the Intersection of Two LinesHow to Solve a Quadratic Equation: A Step-by-Step GuideHow toSolve Systems of Algebraic Equations Containing Two VariablesHow to Complete the Square to Solve a Quadratic EquationYour Guide to Flipping the Inequality Sign (And Solving Inequalities)How toFind a Number of Terms in an Arithmetic SequenceHow toSolve Systems of Equations

      Advertisem*nt

      Expert Interview

      Thanks for reading our article! If you’d like to learn more about math, check out our in-depth interview with Jake Adams.

      More References (3)

      About This Article

      3 Ways to Simplify Complex Numbers - wikiHow (48)

      Co-authored by:

      Jake Adams

      Academic Tutor

      This article was co-authored by Jake Adams. Jake Adams is an academic tutor and the owner of Simplifi EDU, a Santa Monica, California based online tutoring business offering learning resources and online tutors for academic subjects K-College, SAT & ACT prep, and college admissions applications. With over 14 years of professional tutoring experience, Jake is dedicated to providing his clients the very best online tutoring experience and access to a network of excellent undergraduate and graduate-level tutors from top colleges all over the nation. Jake holds a BS in International Business and Marketing from Pepperdine University. This article has been viewed 71,278 times.

      1 votes - 100%

      Co-authors: 5

      Updated: November 28, 2023

      Views:71,278

      Categories: Algebra

      In other languages

      Spanish

      • Print
      • Send fan mail to authors

      Thanks to all authors for creating a page that has been read 71,278 times.

      Reader Success Stories

      • 3 Ways to Simplify Complex Numbers - wikiHow (49)

        Julani Mgeni

        Nov 22, 2017

        "All the steps were helpful, thanks."

      Did this article help you?

      3 Ways to Simplify Complex Numbers - wikiHow (50)

      Advertisem*nt

      3 Ways to Simplify Complex Numbers - wikiHow (2024)

      FAQs

      How do i simplify complex numbers? ›

      Simplify by combining like terms.

      The result of the FOIL rule multiplication should yield two real number terms and two imaginary number terms. Simplify the result by combining like terms together. For the sample 15-9i+10i+6, you can add the 15 and 6 together and add the -9i and the 10i together.

      What are the three ways of expressing complex numbers? ›

      Review the different ways in which we can represent complex numbers: rectangular, polar, and exponential forms.

      How do you solve complex numbers easily? ›

      Add or subtract the real parts and then the imaginary parts. Example 2: Add: ( 3 − 4 i ) + ( 2 + 5 i ) . Solution: Add the real parts and then add the imaginary parts. To subtract complex numbers, subtract the real parts and subtract the imaginary parts.

      How do you simplify complex terms? ›

      To simplify complex concepts without losing precision, consider dividing the concept into smaller parts. Break down the concept into its fundamental elements. Explain each part in simple terms before combining them to illustrate the whole concept. Use clear, concise language and provide examples where possible.

      How do you simplify complex problems? ›

      Useful Tips For Simplifying Complicated Topics
      1. Identify stakeholders. Know who your audience is and where their interests lie.
      2. Compromise when needed. Find common ground to make progress.
      3. Assign ownership and accountability. ...
      4. Follow up and evaluate. ...
      5. Break it down. ...
      6. Provide context and balance.
      Aug 9, 2023

      What is 3 as a complex number? ›

      That fact is that integers are also complex numbers! For example, 3 is a complex number because it can be written as 3+0i.

      What are complex numbers for dummies? ›

      A complex number has the standard form a + bi, where a and b are real numbers. You can add, subtract, and multiply complex numbers using the same algebraic rules as those for real numbers and then simplify the final answer so it's in the standard form. For the most part, the i works just like any other variable.

      Why is 17 a complex number? ›

      There is no imaginary part. In other words, the imaginary part is 0. We can think of 17 as 17 + 0i. In fact all real numbers can be thought of as complex numbers which have zero imaginary part.

      How to simplify a complex process? ›

      What methods and frameworks do you use to simplify complex process design?
      1. Use visual tools. Be the first to add your personal experience.
      2. Apply design thinking. ...
      3. Use standard methods and frameworks. ...
      4. Break down the process into smaller parts. ...
      5. Seek feedback and collaboration. ...
      6. Here's what else to consider.
      Aug 31, 2023

      How do you simplify complex words? ›

      3 Replace complex words

      A third way to simplify complex text is to replace complex words. These are words that are too long, technical, or obscure for your audience. They can be jargon, acronyms, or uncommon terms. For example, you can replace words like "utilize", "substantiate", or "antecedent".

      How to simplify a complex number? ›

      Let's break the process down into steps.
      1. Find the complex conjugate of the denominator.
      2. Multiply the numerator and denominator by the complex conjugate of the denominator. This is okay to do since it's the same as multiplying by 1.
      3. Simplify.

      What is the best way to solve a complex problem? ›

      IV. Solving Complex Problems: A Generic Approach
      1. Step 1: Understand the nature of complex problems.
      2. Step 2: Identifying and defining the problem.
      3. Step 3: Gathering reliable data.
      4. Step 4: Logical decomposition.
      5. Step 5: Generating several candidate solutions.
      6. Step 6: Implementing the solution.
      7. Step 7: Evaluating the solution.
      6 days ago

      How do you break down complex math problems? ›

      III. Break the problem into parts
      1. Read the problem slowly and carefully to obtain each fact or idea.
      2. List in writing the given facts and unknown facts.
      3. Understand the meaning of each word in the problem.
      4. Estimate the outcome.

      How to simplify a complex equation? ›

      Simplifying complex rational expressions follow these three steps: (1) converting the numerator and denominator into single fractions, (2) performing division on the fractions, and (3) simplifying the numerator and denominator by removing common factors. To do the first step, the terms must be in the same denominator.

      How do you simplify a complex system? ›

      How do you simplify complex systems?
      1. Identify the essentials. Be the first to add your personal experience.
      2. Reduce the noise. ...
      3. Use abstraction and decomposition. ...
      4. Apply feedback loops and metrics. ...
      5. Leverage modularity and reusability. ...
      6. Adopt a systems thinking mindset. ...
      7. Here's what else to consider.
      Sep 14, 2023

      How do you simplify complex concepts? ›

      1. 1 Identify your purpose and audience. Before you start simplifying your complex idea, you need to have a clear sense of why and for whom you are communicating it. ...
      2. 2 Use analogies and metaphors. ...
      3. 3 Break down your idea into chunks. ...
      4. 4 Use stories and examples. ...
      5. 5 Test and refine your idea. ...
      6. 6 Here's what else to consider.
      Jul 19, 2023

      Top Articles
      Latest Posts
      Article information

      Author: Saturnina Altenwerth DVM

      Last Updated:

      Views: 5578

      Rating: 4.3 / 5 (64 voted)

      Reviews: 87% of readers found this page helpful

      Author information

      Name: Saturnina Altenwerth DVM

      Birthday: 1992-08-21

      Address: Apt. 237 662 Haag Mills, East Verenaport, MO 57071-5493

      Phone: +331850833384

      Job: District Real-Estate Architect

      Hobby: Skateboarding, Taxidermy, Air sports, Painting, Knife making, Letterboxing, Inline skating

      Introduction: My name is Saturnina Altenwerth DVM, I am a witty, perfect, combative, beautiful, determined, fancy, determined person who loves writing and wants to share my knowledge and understanding with you.